High School Algebra IB
-
License Model
FlexPoint or School/District Hosted
-
Number of Credits
1.0
-
Estimated Completion Time
32-36 weeks
Suggested Prerequisites
Algebra 1-ADescription
Explore quadratic equations and functions, transforming complex problems into powerful tools for solving real-world challenges. You will perform operations with polynomials and radicals while extending the Laws of Exponents to include rational exponents. You will also expand your understanding of functions to include quadratic and exponential functions, using them to model and analyze real-world relationships. Additionally, you will solve quadratic equations in one variable and build functions, identifying their key features and representing them in various ways.Module One: Exponential Functions
-Exponential growth and decay
-Percent rate of change
-Key features of exponential functions
-Graphs of exponential functions
-Compound interest problems
-Equations of exponential functions
-Real-world applications of exponential functions
Module Two: Polynomial Operations
-Laws of exponents including rational exponents
-Add, subtract, and multiply polynomial expressions
-Special products of polynomials
Module Three: Factoring Polynomials
-Greatest common factors in polynomials
-Polynomial division by monomials
-Factoring by grouping
-Factoring trinomials
-Factoring special cases
Module Four: Quadratic Equations
-Simplifying numerical radical expressions
-Operations on numerical radical expressions
-Using square roots to solve quadratic equations
-Using factoring to solve quadratic equations
-Completing the square
-The quadratic formula
-Viable and nonviable solutions
-Real-world applications of quadratic equations
Module Five: Quadratic Functions
-Key features of quadratic functions
-Graphs of quadratic functions
-Equations of quadratic functions
-Real-world applications of quadratic functions
-Translations and dilations of quadratic functions
-Determining function types
Module Six: Displaying and Interpreting Data
-Numerical and categorical data
-Univariate and bivariate data
-Appropriate ways to represent data
-Interpreting data displays
-Two-way frequency tables and associations
-Joint and marginal frequencies
-Estimating using data from a sample survey